
A simulation study of an asymmetric exclusion model with open boundaries and random rates

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1999 J. Phys. A: Math. Gen. 32 2527

(http://iopscience.iop.org/0305-4470/32/13/005)

Download details:

IP Address: 171.66.16.105

The article was downloaded on 02/06/2010 at 07:28

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/32/13
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen.32 (1999) 2527–2540. Printed in the UK PII: S0305-4470(99)99393-9

A simulation study of an asymmetric exclusion model with
open boundaries and random rates

M Bengrine†, A Benyoussef†, H Ez-Zahraouy†, J Krug‡, M Loulidi† and
F Mhirech†§
† Laboratoire de Magnetisme et de Physique des Hautes Energies, Departement de Physique,
Facult́e des Sciences, Rabat, Morocco
‡ Fachbereich Physik, Universität GH Essen, D-45117 Essen, Germany

Received 16 November 1998

Abstract. Using numerical simulations, we study the asymmetric exclusion model with open
boundaries, particlewise disorder and parallel dynamics. At each time step, particles are injected
at the left boundary with probabilityα1t , removed on the right with probabilityβ1t , and jump in
the bulk with probabilitypµ1t , wherepµ is a random rate associated with each injected particleµ.
The parameter1t interpolates between fully parallel (1t = 1) and random sequential (1t → 0)
dynamics. The phase diagram in the(α, β)-plane displays high-density, low-density and maximum-
current phases, with the first-order transition line between high- and low-density phases shifted away
from the lineα = β. Within the low-density phase a platoon phase transition occurs, many features
of which can be explained using exact results for asymmetric exclusion with particlewise disorder
on the ring. In a certain region of parameter space the disorder induces a cusp in the current–density
relation at maximum flow. Our simulations indicate that this does not affect the topology of the
phase diagram, nor the familiar 1/

√
x-decay of the density profile in the maximum-current phase.

1. Introduction

Collective transport in single-file systems has a wide range of applications ranging from
biopolymerization [1] to highway traffic [2]. Driven single-file systems are exceedingly
sensitive to the boundary conditions governing the in- and outflow of particles, to the extent that
phase transitions among different bulk states can be induced by a change of boundary rates [3].
By the same token spatially distributed bottlenecks [4–6] or defect particles with slower
intrinsic jump rates [7–11] can have dramatic effects, causing macroscopically inhomogeneous
density profiles on ever increasing length scales. A classic example combining these features—
inflow, outflow and defect particles—is the problem of tunnel traffic with a range of vehicular
velocities first analysed by Newell [12].

A great deal of progress has been achieved in past years in our understanding of boundary-
and disorder-induced phase transitions in driven single-file systems. Among the highlights,
the exact solution of the totally asymmetric exclusion process (TASEP) with open boundaries
should be mentioned [13, 14], which was recently extended to the case of parallel update
[15, 16], as well as the solution of the TASEP with particlewise disorder and a variety of
update procedures by Evans [17]. In contrast, little is known analytically about systems with
spatially distributed defects [6].
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In this paper we present the results of an exploratory numerical study of a model which
combines, in the spirit of Newell [12], open boundary conditions and random jump rates
associated with particles. Specifically, in our model particles jump to the right to vacant
nearest neighbour sites with a probabilitypµ1t in each (discrete) time step, wherepµ is a
quenched random variable associated with particleµ (its ‘intrinsic’ jump rate) and1t ∈ (0, 1]
is a model parameter that allows us to interpolate between the cases of fully parallel (1t = 1)
and random sequential (1t → 0) updates. At the right (left) boundary particles are injected
(extracted) with probabilityα1t (β1t). A detailed description of the model is provided in
section 2.

Our primary objective is to determine the phase diagram of the model in the(α, β)-plane,
which is known analytically only in the pure case (pµ ≡ p for all µ) [13–16]. As described
in section 3.1, the overall topology of the phase diagram corresponds to that of the pure
system. Quantitative differences can be understood from the current–density relation of the
disordered model with periodic boundary conditions (section 3.2). In the periodic case the
particlewise disorder induces a transition into an inhomogeneous low-density phase where
‘platoons’ (queues) form behind exceptionally slow particles [18]. In sections 3.3 and 3.4 we
show that most features of this transition survive in the open system. Section 3.5 addresses the
behaviour in a region of parameter space where the densityρmax of maximum flow coincides
with the critical densityρ∗ of the platoon phase transition, and some conclusions are given in
section 4.

2. Model

We consider a one-dimensional lattice of lengthL. Each site is either occupied by one particle
or is empty. A configuration of the system is characterized by binary variables{τi} where
τi = 0 (τi = 1) if site i is empty (full). During a time interval1t , each particleµ, hops with
probabilitypµ1t to its right if this site is empty and does not move otherwise. Particles are
injected at the left boundary with a rateα1t and removed on the right with a rateβ1t . During
one update step the new particle positions do not influence the rest and only previous positions
have to be taken into account. The advantage of parallel update, with respect to sublattice or
sequential update is that all sites are equivalent, which should be the case in a realistic model
with translational invariance.

Thus, if the system has the configurationτ1(t), τ2(t), . . . , τL(t) at timet it will change at
time t +1t to the following.

For 1< i < L, τi(t +1t) = 1 with probability

qi = τi(t) + τi−1(t)(1− τi(t))pµ1t − τi(t)(1− τi+1(t))pν1t (1)

wherepµ andpν denote the jump rates of the particles at sitesi − 1 andi, respectively, and
τi(t +1t) = 0 with probability 1− qi .

For i = 1, τ1(t +1t) = 1 with probability

q1 = τ1(t) + α1t(1− τ1(t))− τ1(t)(1− τ2(t))pν1t (2)

wherepν denote the jump rate of the particle at site 1, andτ1(t +1t) = 0 with probability
1− q1.

For i = L, τL(t +1t) = 1 with probability

qL = τL(t) + τL−1(t)(1− τL(t))pµ1t − β1tτL(t) (3)

wherepµ denotes the jump rate of the particle at siteL−1, andτL(t +1t) = 0 with probability
1− qL.
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In the following we shall consider that an intrinsic probability,pµ ∈ [c, 1], is assigned to
each particleµ, randomly drawn from the following continuous probability distribution [9]

f (p) = n + 1

(1− c)n+1
(p − c)n (4)

where we will mostly choosen = 1 andc = 1
2; the inhomogenous platoon phase in the

periodic system exists at sufficiently low-density providedn > 0, see [18] and section 3.3.
For each particle that enters the system ati = 1 a new jump rate is picked, which the particle
then keeps until it exits ati = L.

3. Simulation results and discussion

We use lattices of sizesL = 2000–105 and a random initial distribution of particles. After
a sufficiently long period of time, the system reaches a stationary state and we compute the
average〈w〉 of any parameterw by averagingw(t) (t = m1t , m integer) over 2× 105–107

time steps. Note that, in contrast to the case of a periodic lattice [9, 19], a separate disorder
average is not necessary, because new particles are constantly injected into the system.

3.1. Phase diagram

The method for numerically determining the phase diagram was described previously for the
pure case [20]. Figure 1(a) shows the dependence of the bulk densityρ on the rate of injected
particles,α, for a large and fixed value of1t (1t = 1, ‘fully parallel update’) and for several
values of the rate of removed particlesβ. It is clear that for a fixed value ofβ less than a
critical valueβc, the bulk density first increases smoothly when increasing the rate of injected
particlesα (low-density phase), until at a valueα∗(β) a first-order transition characterized by
a jump discontinuity brings the system into thehigh-density phasewhere the density becomes
independent ofα. The density jump decreases in magnitude with increasingβ, and vanishes
at the critical pointβ = βc. Forβ greater thanβc one finds a maximal current phase, where
the bulk density and the current are independent on the rate of injected and removed particles.
We will see in section 3.2 how the current and density in this phase can be obtained from the
analytic solution for the case of periodic boundary conditions [17].

It is worth pointing out that, in general, the dependence of the bulk density on the rate
of injected particlesα in the low-density phase is nonlinear. This is also true in the pure
system with parallel update, where the functional relationρ(α) is known analytically [15,16].
Only for the pure system with random sequential update isρ equal toα [3,13,14]. The same
statement applies, of course, to the dependence ofρ onβ in the high-density phase.

A qualitative difference compared with the pure case is that the first-order transition occurs
at a valueα∗(β)which is slightly smaller than the rate of removed particlesβ. This is an effect
of the disorder in our model, which breaks the particle–hole symmetry that would otherwise
guaranteeα∗(β) = β [13–16, 20]. In order to provide more information concerning the
coexistence line between the low- and high-density phases we show in figure 1(b), for1t = 1
andβ = 0.1, the density profile as a function of the position. The data reveal that forα = β, the
density profile does not depend linearly on the position, as would be expected in the presence
of particle–hole symmetry. Instead, the density profile becomes linear forα = α∗, slightly
inferior to the value of removed particlesβ (hereβ = 0.1, α∗ = 0.0995). The existence
of a linear profile at coexistence is the result of a fluctuating shock front which separates the
high-density region from the low-density one.

For the purpose of computing the phase diagram we identify the first-order transition by the
appearance of a peak in the first derivative ofρ(α)with respect toα, indicative of the (smeared
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Figure 1. (a) The variation of the bulk density versus the rate of injected particlesα, forL = 2000
and1t = 1. (b) The density profiles near the first-order transition forL = 2000,1t = 1 and
β = 0.1.
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Figure 2. The phase diagram in the(α, β)-plane forL = 2000 and for1t = 1,n = 1 andc = 0.5.
The vertical dotted line represents the platoon transition(ρ = ρ∗) in the low-density phase.

out) discontinuity shown in figure 1. At the second-order transition the peak is replaced by a
jump. Collecting these results we obtain the phase diagram as shown in figure 2 for1t = 1.
The low-density phase, high-density phase and maximal current phase are recovered with the
end point(αc, βc) such asαc = βc = 0.46. In the case of1t = 0.1 (not shown in the figure)
we findαc = βc = 0.36. To put these results in perspective, we note that for thepureversion
of our model, i.e. withpµ ≡ p for all particles, the exact solution [15, 16] gives the critical
value

αpure
c (p,1t) = 1−√1− p1t

1t
(5)

which is a monotonically increasing function ofp. Since in the disordered casec 6 pµ 6 1,
we expect thatαpure

c (c,1t) 6 αc 6 αpure
c (1,1t). For c = 1

2 this yields 0.2936 αc 6 1 for
1t = 1, and 0.253 6 αc 6 0.513 for1t = 0.1, consistent with our numerical estimates.
Moreover, since (5) also increases monotonically as a function of1t for anyp, it explains why
the maximum-current phase gains more space with decreasing1t . Note, in particular, that
for 1t = 1 the maximum-current phase exists in our model only due to the random hopping
rates; in the absence of disorder, whenp = 1t = 1, it disappears altogether [21], as is most
easily understood within the framework of the waiting-time representation [22].

3.2. Current–density relation

The current–density relation for the disordered model can be obtained analytically in the
hydrodynamic limit (L → ∞) using the known invariant measure [17] for the particle
headways (the number of vacants sites in front of a given particleµ) defined byuµ =
xµ+1 − xµ − 1, wherexµ is the position of particleµ. Using the headway distribution, the
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Figure 3. The variation of the currentJ as a function of densityρ forL = 2000,n = 1 andc = 1
2 .

The vertical dotted lines represent the platoon transition(ρ = ρ∗) in the low-density phase for
each value of1t . The symbols represent our simulation data, while the full curves represent the
analytical results.

average headway〈uµ〉 can be computed for each particle. Averaging this with respect to the
random ratespµ, yields an implicit equation for the stationary particle velocityv(ρ), which
takes the form

ρ =
[
1 + (1− v1t)v

∫ 1

c

f (p)

(p − v) dp

]−1

. (6)

This relation holds for densitiesρ ∈ [ρ∗, 1], whereρ∗ is the critical density for the onset of
platoon formation [9, 10, 17, 18]. The value ofρ∗ is found by settingv = c in the right-hand
side of (6). Using the jump rate distribution (4), this yields

ρ∗(n, c,1t) = n(1− c)
n + c − c2(n + 1)1t

. (7)

For ρ less thanρ∗, the overall speed will be set by the slowest particles, and consequently
v = c.

The current–density relation is then given byJ (ρ) = ρv(ρ), wherev is determined from
(6) for ρ > ρ∗ andv = c for ρ < ρ∗; in the low-density regime the current islinear in the
density. In figure 3, the analytic prediction for the current in the infinite system is compared
with simulations of finite open systems. By sampling the different regions of the(α, β)-phase
diagram, we collect pairs of values(ρ, J (ρ)), which are depicted by the symbols in figure 3.
The excellent agreement with the analytic curve shows that the finite open system is well
described by its hydrodynamic limit. Figure 4 shows the same kind of comparison for the
particle velocityv(ρ).
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Figure 4. The variation of the velocity〈v〉 as a function of densityρ, for L = 2000,n = 1 and
c = 1

2 . The vertical dotted lines represent the platoon transitions in the low-density phase for
1t = 1,1t = 0.5 and1t = 0.1. The symbols represent our simulations results, while the full
curves represent the analytic results.

Of particular interest is the maximal currentJmax and the corresponding densityρmax,
since this is the density selected in the maximal current phase [3]. We find that both quantities
increase with increasing1t . For instance,(Jmax, ρmax) ≈ (0.2016, 0.5175) for 1t = 0.1,
(Jmax, ρmax) ≈ (0.2203, 0.5250) for 1t = 0.5 and (Jmax, ρmax) ≈ (0.2576, 0.5516) for
1t = 1. Note that in the absence of randomness particle-hole symmetry enforces thatρmax= 1

2
independent of1t .

3.3. The platoon phase

In the presence of random jump rates associated with the particles the infinite system displays a
phase transition atρ = ρ∗ [8–10,17]. Through a mechanism closely related to Bose–Einstein-
condensation [10], the stationary distribution of particle headways ceases to be normalizable
belowρ∗, and consequently the stationary density profile on a finite ring phase separates into
a region of densityρ∗ and a macroscopic gap (the ‘condensate’) of density zero. Numerically,
the transition can therefore be be located by monitoring the variance of the headways [9]

12 = 〈〈u2
µ〉µ − 〈uµ〉2µ〉 (8)

where〈 〉µ means the average over all the values of the gap, as a function of density and system
size. Forρ > ρ∗, 12 is independent of system size, while forρ < ρ∗ it is dominated by the
macroscopic gaps and acquires anL-dependence.

In figure 5 we show12(ρ) for the open system with1t = 0.1 and for two values of the
system sizeL = 2000 andL = 500. As expected, the data for the two system sizes coincide
for ρ > ρ∗ but differ for ρ < ρ∗. It is worth noting, however, that theL-dependence in the
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Figure 5. The semilogarithmic plot of the variance of headways12 versus densityρ for1t = 0.1,
n = 1 andc = 1

2 . The vertical full line represents the platoon transition(ρ = ρ∗).

low-density phase is much weaker than for the periodic system, where it can be shown [9] that,
assuming complete phase separation in the stationary state,

12 ≈ (L/ρ)(1− ρ/ρ∗)2. (9)

In the open system this limit is never reached, because the gaps can only grow for a time
T ∼ Lof the order of the residence time of particles in the system. Since the large gaps between
platoons grow only sublinearly in time (see below), they always remain small compared withL.

To illustrate the effect of1t we show in figure 6 the variation ofρ∗ as a function of1t .
The points show numerical data obtained through measurements of12(ρ), as illustrated in
figure 5, while the full curve show the prediction (7), which forn = 1, c = 1

2 reduces to

ρ∗(1t) = 1

3−1t . (10)

The increase ofρ∗ with increasing1t can be interpreted [18] in terms of a competition between
two distinct kinds of randomness: the (static) disorder in the jump rates and the (dynamic)
stochasticity in the updating. In the low-density phase, the disorder in the jump rates dominates.
By increasing1t the dynamic stochasticity is reduced and therefore the influence of the static
disorder grows, leading to an expansion of the low-density phase. The location of the platoon
phase transition in the(α, β)-phase diagram is shown by a dotted line in figure 2, where it can
be seen that the platoon phase occupies almost the entire low-density phase.

3.4. Kinetics of platoon formation

In the infinite or periodic system an initially homogeneous configuration with densityρ < ρ∗

approaches the phase-separated state through a coarsening process, characterized by a power
law increase of the typical sizeξ(t) of platoons or gaps between platoons. Based on the analogy
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Figure 6. The variation of the critical densityρ∗, for platoon formation as a function of1t for
L = 2000,n = 1 andc = 1

2 . The full curve denotes the analytical result (10). The points denote
the numerical data.

with a deterministic model of platoon formation [7], this power law was conjectured [9] to be
given by

ξ(t) ∼ t (n+1)/(n+2) (11)

where the exponentn characterizes the behaviour of the probability distribution of jump rates
f (p) (see equation (4)). The fact thatξ(t)grows sublinearly with time, i.e. limt→∞ ξ(t)/t = 0,
can be proved rigorously [23].

Numerical tests of the prediction (11) were performed for the periodic system with random
sequential (1t → 0) [9] and fully parallel (1t → 1) [19] dynamics. In [9] deviations from
the power law (11) were detected, while full agreement with (11) was found in [19]. Since
different measures of the platoon size were used in the two studies, a direct comparison is
difficult [18].

We have therefore readdressed the issue within our model, which allows continuous
interpolation between fully parallel and random sequential dynamics. Figure 7 shows
numerical data for the variance of particle headways12(t)which, under mild assumptions [18],
can be shown to be proportional toξ(t), for large systems (L = 105) with various values of
1t and both periodic and open boundary conditions. For systems of this size the boundary
conditions are not expected to matter on the timescales of interest. All the data are in reasonable
agreement with the relation (11), which predictsξ ∼ t2/3 in our case. We attribute the slight
decrease of the exponent at long times to the onset of boundary effects.
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Figure 7. Time dependence of the headway variance12, forL = 105, n = 1 andc = 1
3 . (a) Open

boundary conditions withα = 0.28 andβ = 0.6. (b) Parallel update for1t = 1. The curve is
a juxtaposition of simulations data obtained with a periodic boundary conditions withρ = 1

3 and
open boundary conditions withα = 0.28 andβ = 0.6.
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Figure 8. Phase diagram in the(c,1t)-plane forn = 2. The broken curve separate two regions:
ρ∗ < ρmax andρ∗ = ρmax.

3.5. The caseρ∗ = ρmax
All the results presented so far were obtained forn = 1 in (4), which belongs to the regime of
second-order platoon phase transitions in the sense of [9]. In this regime the derivative of the
currentJ (ρ), or, equivalently, of the velocityv(ρ) = J (ρ)/ρ, with respect toρ is continuous at
ρ = ρ∗. Consequently the current–density relation has the qualitative shape shown in figure 3,
with a quadratic maximum at a densityρmax strictly larger thanρ∗. On the other hand, for
n > 1 the platoon transition becomes first order, and it is possible to choose parameters such
that the critical densityρ∗ coincides with the maximum-current densityρmax. In figure 8 the
corresponding region in the(c,1t)-plane is shown forn = 2, as computed analytically from
equation (6). Below the dashed line in figure 8, whereρ∗ = ρmax, the current–density relation
displays a cusp at the maximum (figure 9).

The mean-field theory of boundary-induced phase transitions [3, 24] shows that the
characteristics of such transitions depend crucially on the behaviour ofJ (ρ) near its maximum.
For example, if

J (ρmax)− J (ρ) ∼ |ρ − ρmax|m (12)

then the density profile in the maximum-current phase decays, within the mean field, as
ρ(x) ∼ x1/(m−1). In the generic casem = 2 fluctuations change the power law toρ(x) ∼ 1/

√
x

[3,13,14,16,25], while form = 4 the fluctuations were argued [3] to be irrelevant. The only
exactly solved case withm 6= 2 is the deterministic limitpµ ≡ 1 of the fully parallel TASEP,
for whichm = 1 and it is found [21] that the maximum-current phase disappears altogether.

In the disordered model the current–density relation can be changed fromm = 2 to
m = 1 by the choice ofn, c and1t . It therefore seemed worthwhile to obtain the(α, β)-phase
diagram also for a parameter set below the dotted line in figure 8, corresponding tom = 1. The
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Figure 9. The variation of the currentJ as a function of densityρ for L = 2000,1t = 1, n = 2
andc = 0.4. The vertical dotted line represents the critical density(ρ = ρ∗ = ρmax)

method used for the computation was described above in section 3.1. The result is shown in
figure 10. The topology of the phase diagram is similar to the other cases (see figure 2), and the
maximum-current phase is seen to persist. The density profile in the maximum-current phase
is shown in figure 11. While the data are too noisy to precisely determine the decay exponent,
they are certainly consistent with a 1/

√
x-decay, as in the pure case [3,13,14,16,25]; a fit in

the range 16 i 6 300 yields an exponent of 0.47± 0.06. Thus, in contrast to mean-field
theory [3], the density profile appears to be insensitive to the order of the current maximum.

4. Conclusions

Using numerical simulations, we have studied the effect of particlewise disorder on the
phase diagram for the asymmetric exclusion model with open boundaries and a hopping rate
parameter1t , which interpolates between random sequential and fully parallel dynamics.
Apart from effects of the broken particle–hole symmetry, such as the (slight) shift of the first-
order transition line away from the lineα = β, the phase diagram was found to be rather
similar to that obtained in the pure case [13, 14, 16]. One explanation for the fact that the
effects of disorder are, perhaps, less pronounced than expected, was indicated in section 3.3.
Since the lifetime of particles within the open system is only of the orderL, there is no time
for the disorder-induced density inhomogeneities (platoons) to develop up to the scale of the
system size; using (11) one estimates that they reach a size of the orderL(n+1)/(n+2), which is
small compared withL whenL→∞ for anyn.

On the other hand, we have seen that the platoon phase transition occurring in the low-
density phase retains most of the features observed previously in systems with periodic
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Figure 10. Phase diagram in the(α, β)-plane forL = 2000,1t = 1, n = 2 andc = 0.4. The
dotted line represents the lineα = β.

Figure 11. A double-logarithmic plot of the density profile forL = 1000,1t = 1,c = 0.4,n = 2,
α = 0.9 andβ = 0.7. The dotted line indicates the 1/

√
x-decay expected for the pure system.
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boundary conditions, and the analytic results obtained for this case [9, 10, 17] were also
quantitatively confirmed for the open system. Surprisingly, we found that a disorder-induced
cusp at the maximum of the current–density relation changes neither the topology of the phase
diagram, nor the decay of the density profile in the maximum-current phase. The consequences
of such singularities on boundary-induced phase transitions should be explored in future work.
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