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Abstract. Using numerical simulations, we study the asymmetric exclusion model with open
boundaries, particlewise disorder and parallel dynamics. At each time step, patrticles are injected
at the left boundary with probability Az, removed on the right with probabilifgA¢, and jump in

the bulk with probabilityp,, At, wherep,, is a random rate associated with each injected payiicle

The parametent interpolates between fully paralleh¢ = 1) and random sequentiah( — 0)
dynamics. The phase diagramin te 8)-plane displays high-density, low-density and maximum-
currentphases, with the first-order transition line between high- and low-density phases shifted away
from the linea = 8. Within the low-density phase a platoon phase transition occurs, many features
of which can be explained using exact results for asymmetric exclusion with particlewise disorder
onthering. Inacertain region of parameter space the disorder induces a cusp in the current—density
relation at maximum flow. Our simulations indicate that this does not affect the topology of the
phase diagram, nor the familiay ¥/x-decay of the density profile in the maximum-current phase.

1. Introduction

Collective transport in single-file systems has a wide range of applications ranging from
biopolymerization [1] to highway traffic [2]. Driven single-file systems are exceedingly
sensitive to the boundary conditions governing the in- and outflow of particles, to the extent that
phase transitions among different bulk states can be induced by a change of boundary rates [3].
By the same token spatially distributed bottlenecks [4—6] or defect particles with slower
intrinsic jump rates [7—11] can have dramatic effects, causing macroscopically inhomogeneous
density profiles on everincreasing length scales. A classic example combining these features—
inflow, outflow and defect particles—is the problem of tunnel traffic with a range of vehicular
velocities first analysed by Newell [12].

A great deal of progress has been achieved in past years in our understanding of boundary-
and disorder-induced phase transitions in driven single-file systems. Among the highlights,
the exact solution of the totally asymmetric exclusion process (TASEP) with open boundaries
should be mentioned [13, 14], which was recently extended to the case of parallel update
[15, 16], as well as the solution of the TASEP with particlewise disorder and a variety of
update procedures by Evans [17]. In contrast, little is known analytically about systems with
spatially distributed defects [6].

§ E-mail addressnhirech@fsr.ac.ma

0305-4470/99/132527+14$19.50 © 1999 IOP Publishing Ltd 2527



2528 M Bengrine et al

In this paper we present the results of an exploratory numerical study of a model which
combines, in the spirit of Newell [12], open boundary conditions and random jump rates
associated with particles. Specifically, in our model particles jump to the right to vacant
nearest neighbour sites with a probabilgyAr in each (discrete) time step, whepg is a
guenched random variable associated with partidliés ‘intrinsic’ jump rate) andAt € (0, 1]
is a model parameter that allows us to interpolate between the cases of fully parakell)
and random sequentiah¢ — 0) updates. At the right (left) boundary particles are injected
(extracted) with probabilityeAr (8At). A detailed description of the model is provided in
section 2.

Our primary objective is to determine the phase diagram of the model (@ t®-plane,
which is known analytically only in the pure case,(= p for all 1) [13-16]. As described
in section 3.1, the overall topology of the phase diagram corresponds to that of the pure
system. Quantitative differences can be understood from the current—density relation of the
disordered model with periodic boundary conditions (section 3.2). In the periodic case the
particlewise disorder induces a transition into an inhomogeneous low-density phase where
‘platoons’ (queues) form behind exceptionally slow particles [18]. In sections 3.3 and 3.4 we
show that most features of this transition survive in the open system. Section 3.5 addresses the
behaviour in a region of parameter space where the depsityof maximum flow coincides
with the critical densityp* of the platoon phase transition, and some conclusions are given in
section 4.

2. Model

We consider a one-dimensional lattice of lenfithEach site is either occupied by one particle
or is empty. A configuration of the system is characterized by binary varigblésvhere
1, = 0 (r; = 1) if sitei is empty (full). During a time interval¢, each particlet, hops with
probability p,, At to its right if this site is empty and does not move otherwise. Particles are
injected at the left boundary with a raté\r and removed on the right with a rgge\z. During
one update step the new particle positions do not influence the rest and only previous positions
have to be taken into account. The advantage of parallel update, with respect to sublattice or
sequential update is that all sites are equivalent, which should be the case in a realistic model
with translational invariance.

Thus, if the system has the configuratiait), 7,(¢), . . ., .. (¢) at timet it will change at
timer + At to the following.

Forl<i < L, 7;(t + Ar) = 1 with probability

gi = (1) + 111 — w () puAt — 1 (1) (L — 7141(2)) py At 1)
wherep,, andp, denote the jump rates of the particles at sites1 andi, respectively, and
7; (t + At) = 0 with probability 1— ¢;.

Fori = 1, 71(t + At) = 1 with probability
q1=1(t) +aAt(1—71(t) — () (1 — 2(t)) py At @)

where p, denote the jump rate of the particle at site 1, apd + Ar) = 0 with probability
1- q1.
Fori = L, 7, (t + Ar) = 1 with probability
qr =t(t) +1_1(t) (L — 1 (1)) pu At — BAtTL(F) (3

wherep,, denotes the jump rate of the particle at gite 1, andr; (1 + Ar) = 0 with probability
1- qrL.
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In the following we shall consider that an intrinsic probability, € [c, 1], is assigned to
each particlet, randomly drawn from the following continuous probability distribution [9]

+1
f(p) = ﬁ(l? —o)" (4)

where we will mostly choose = 1 andc¢ = %; the inhomogenous platoon phase in the
periodic system exists at sufficiently low-density provided- 0, see [18] and section 3.3.
For each particle that enters the system-atl a new jump rate is picked, which the particle
then keeps until it exits dt= L.

3. Simulation results and discussion

We use lattices of sizek = 2000-10 and a random initial distribution of particles. After

a sufficiently long period of time, the system reaches a stationary state and we compute the
average(w) of any parametew by averagingu(r) (r = mAt, m integer) over 2x 10°—10/

time steps. Note that, in contrast to the case of a periodic lattice [9, 19], a separate disorder
average is not necessary, because new particles are constantly injected into the system.

3.1. Phase diagram

The method for numerically determining the phase diagram was described previously for the
pure case [20]. Figure &) shows the dependence of the bulk dengityn the rate of injected
particles, for a large and fixed value &fr (Ar = 1, ‘fully parallel update’) and for several
values of the rate of removed particl@s It is clear that for a fixed value # less than a
critical valueg., the bulk density first increases smoothly when increasing the rate of injected
particlesa (low-density phaseuntil at a valuex*(8) a first-order transition characterized by

a jump discontinuity brings the system into thigh-density phasehere the density becomes
independent of. The density jump decreases in magnitude with increg8irand vanishes

at the critical poin{s8 = g.. For 8 greater tharg. one finds a maximal current phase, where
the bulk density and the current are independent on the rate of injected and removed particles.
We will see in section 3.2 how the current and density in this phase can be obtained from the
analytic solution for the case of periodic boundary conditions [17].

It is worth pointing out that, in general, the dependence of the bulk density on the rate
of injected particlesy in the low-density phase is nonlinear. This is also true in the pure
system with parallel update, where the functional relati¢m) is known analytically [15, 16].

Only for the pure system with random sequential updateggual tox [3,13,14]. The same
statement applies, of course, to the dependengeonig in the high-density phase.

A qualitative difference compared with the pure case is that the first-order transition occurs
at a valuex*(8) which is slightly smaller than the rate of removed partigded his is an effect
of the disorder in our model, which breaks the particle—hole symmetry that would otherwise
guaranteex*(8) = B [13-16, 20]. In order to provide more information concerning the
coexistence line between the low- and high-density phases we show in fipureolAr = 1
andg = 0.1, the density profile as a function of the position. The data reveal thatfop, the
density profile does not depend linearly on the position, as would be expected in the presence
of particle—hole symmetry. Instead, the density profile becomes linear fera™, slightly
inferior to the value of removed particlgs (hereg = 0.1, «* = 0.0995). The existence
of a linear profile at coexistence is the result of a fluctuating shock front which separates the
high-density region from the low-density one.

For the purpose of computing the phase diagram we identify the first-order transition by the
appearance of a peak in the first derivative ) with respect tar, indicative of the (smeared
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Figure 1. (a) The variation of the bulk density versus the rate of injected partiglésr L = 2000

andAt = 1. (b) The density profiles near the first-order transition for= 2000,Ar = 1 and
p=01.
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Figure 2. The phase diagram in thie, 8)-plane forL = 2000 and forAr = 1,n = 1 andc = 0.5.
The vertical dotted line represents the platoon transitioe: p*) in the low-density phase.

out) discontinuity shown in figure 1. At the second-order transition the peak is replaced by a
jump. Collecting these results we obtain the phase diagram as shown in figura2 fod.

The low-density phase, high-density phase and maximal current phase are recovered with the
end point(e,, B.) such asx. = 8. = 0.46. In the case oAr = 0.1 (not shown in the figure)

we finda, = 8. = 0.36. To put these results in perspective, we note that foptineversion

of our model, i.e. withp,, = p for all particles, the exact solution [15, 16] gives the critical
value

1-./1— pAt (5)
At

which is a monotonically increasing function pf Since in the disordered case< p, < 1,

we expect that! " (c, At) < o < af (1, At). Forc = 3 this yields 0293 < «. < 1 for

At = 1, and 0253 < a,. < 0.513 for Ar = 0.1, consistent with our numerical estimates.
Moreover, since (5) also increases monotonically as a functian &r any p, it explains why

the maximum-current phase gains more space with decreasinglote, in particular, that

for At = 1 the maximum-current phase exists in our model only due to the random hopping
rates; in the absence of disorder, whee= At = 1, it disappears altogether [21], as is most

easily understood within the framework of the waiting-time representation [22].

oP(p, Ar) =

3.2. Current—density relation

The current—density relation for the disordered model can be obtained analytically in the
hydrodynamic limit £ — oo) using the known invariant measure [17] for the particle
headways (the number of vacants sites in front of a given parigldefined byu, =

xu+1 — X, — 1, wherex,, is the position of particlg.. Using the headway distribution, the
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Figure 3. The variation of the current as a function of density for L = 2000,» = 1 andc = %

The vertical dotted lines represent the platoon transitor= p*) in the low-density phase for
each value ofAr. The symbols represent our simulation data, while the full curves represent the
analytical results.

average headwayy, ) can be computed for each particle. Averaging this with respect to the
random rateg,,, yields an implicit equation for the stationary particle veloaity), which
takes the form

1 -1
o= |:1 +(1- vAt)v/ fp) dp:| . (6)
c (P - U)

This relation holds for densities € [p*, 1], wherep* is the critical density for the onset of

platoon formation [9, 10,17, 18]. The value of is found by setting = ¢ in the right-hand
side of (6). Using the jump rate distribution (4), this yields

n(l—rc)
n+c—c2(n+1At )

For p less thanp*, the overall speed will be set by the slowest particles, and consequently
UV =cC.

The current—density relation is then givenbgp) = pv(p), wherev is determined from
(6) for p > p* andv = c for p < p*; in the low-density regime the currentlisear in the
density. In figure 3, the analytic prediction for the current in the infinite system is compared
with simulations of finite open systems. By sampling the different regions abth&)-phase
diagram, we collect pairs of valuég, J(p)), which are depicted by the symbols in figure 3.
The excellent agreement with the analytic curve shows that the finite open system is well
described by its hydrodynamic limit. Figure 4 shows the same kind of comparison for the
particle velocityv(p).

p*(n,c, At) =
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Figure 4. The variation of the velocityv) as a function of density, for L = 2000,n = 1 and

c = % The vertical dotted lines represent the platoon transitions in the low-density phase for

At =1, At = 0.5 andAr = 0.1. The symbols represent our simulations results, while the full
curves represent the analytic results.

Of particular interest is the maximal curreftax and the corresponding densityax,
since this is the density selected in the maximal current phase [3]. We find that both quantities
increase with increasing¢. For instance{Jmax pmax) ~ (0.2016 0.5175 for Ar = 0.1,
(Jmax Pmax) ~ (0.2203 0.5250 for At = 0.5 and (Jmax pmax) ~ (0.2576 0.5516) for
At = 1. Note thatinthe absence of randomness particle-hole symmetryenforq&gat!r@t%
independent ofAr.

3.3. The platoon phase

In the presence of random jump rates associated with the particles the infinite system displays a
phase transition at = p* [8-10,17]. Through a mechanism closely related to Bose—Einstein-
condensation [10], the stationary distribution of particle headways ceases to be normalizable
below p*, and consequently the stationary density profile on a finite ring phase separates into
a region of density* and a macroscopic gap (the ‘condensate’) of density zero. Numerically,
the transition can therefore be be located by monitoring the variance of the headways [9]
A% = ((us), — (u,)2) 8)

where( ), means the average over all the values of the gap, as a function of density and system
size. Forp > p*, A% is independent of system size, while for< p* it is dominated by the
macroscopic gaps and acquiresladependence.

In figure 5 we showA?(p) for the open system withh+ = 0.1 and for two values of the
system sizd. = 2000 andL = 500. As expected, the data for the two system sizes coincide
for p > p* but differ for p < p*. It is worth noting, however, that the-dependence in the
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Figure 5. The semilogarithmic plot of the variance of headwaysversus density for Az = 0.1,
n=1andc = % The vertical full line represents the platoon transitipn= p*).

low-density phase is much weaker than for the periodic system, where it can be shown [9] that,
assuming complete phase separation in the stationary state,

A2~ (L/p)(L—p/p")2. Q)
In the open system this limit is never reached, because the gaps can only grow for a time
T ~ L ofthe order ofthe residence time of particles in the system. Since the large gaps between
platoons grow only sublinearly in time (see below), they always remain small compared with
To illustrate the effect ofAr we show in figure 6 the variation @f as a function ofAr.
The points show numerical data obtained through measurement$(pf, as illustrated in
figure 5, while the full curve show the prediction (7), which foe 1, ¢ = % reduces to

(A1) = !
P T 3- A

The increase gf* with increasingA¢ can be interpreted [18] in terms of a competition between
two distinct kinds of randomness: the (static) disorder in the jump rates and the (dynamic)
stochasticity inthe updating. Inthe low-density phase, the disorder inthe jump rates dominates.
By increasingAt the dynamic stochasticity is reduced and therefore the influence of the static
disorder grows, leading to an expansion of the low-density phase. The location of the platoon
phase transition in th@x, 8)-phase diagram is shown by a dotted line in figure 2, where it can
be seen that the platoon phase occupies almost the entire low-density phase.

(10)

3.4. Kinetics of platoon formation

In the infinite or periodic system an initially homogeneous configuration with depsityp*
approaches the phase-separated state through a coarsening process, characterized by a power
law increase of the typical sizér) of platoons or gaps between platoons. Based on the analogy
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Figure 6. The variation of the critical density*, for platoon formation as a function & for
L =2000,n = 1 andc = % The full curve denotes the analytical result (10). The points denote
the numerical data.

with a deterministic model of platoon formation [7], this power law was conjectured [9] to be
given by

where the exponemt characterizes the behaviour of the probability distribution of jump rates
f(p) (see equation (4)). The fact that) grows sublinearly with time, i.e. lim, . £(¢)/t = 0,
can be proved rigorously [23].

Numerical tests of the prediction (11) were performed for the periodic system with random
sequential A1 — 0) [9] and fully parallel At — 1) [19] dynamics. In [9] deviations from
the power law (11) were detected, while full agreement with (11) was found in [19]. Since
different measures of the platoon size were used in the two studies, a direct comparison is
difficult [18].

We have therefore readdressed the issue within our model, which allows continuous
interpolation between fully parallel and random sequential dynamics. Figure 7 shows
numerical data for the variance of particle headwayg) which, under mild assumptions [18],
can be shown to be proportional §¢), for large systemsI( = 10°) with various values of
At and both periodic and open boundary conditions. For systems of this size the boundary
conditions are not expected to matter on the timescales of interest. Allthe data are in reasonable
agreement with the relation (11), which predigts- 23 in our case. We attribute the slight
decrease of the exponent at long times to the onset of boundary effects.
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A simulation study of an asymmetric exclusion model

2537

0.60 -

0.55 | )

0.50 - p*<pmax //

0.45 - -

0.40 |- =T

0.35 1 . 1
0.2 0.4 0.6 0.8 1.0
At

Figure 8. Phase diagram in the, At)-plane forn = 2. The broken curve separate two regions:
p* < pmaxandp* = pmax.

3.5. The case* = p,ux

All the results presented so far were obtained et 1 in (4), which belongs to the regime of
second-order platoon phase transitions in the sense of [9]. In this regime the derivative of the
current/ (p), or, equivalently, of the velocity(p) = J(p)/p, with respect te is continuous at
p = p*. Consequently the current—density relation has the qualitative shape shown in figure 3,
with a quadratic maximum at a density,ax Strictly larger thano*. On the other hand, for
n > 1 the platoon transition becomes first order, and it is possible to choose parameters such
that the critical density* coincides with the maximum-current densifyax. In figure 8 the
corresponding region in thi, Ar)-plane is shown forn = 2, as computed analytically from
equation (6). Below the dashed line in figure 8, whete= pmayx, the current—density relation
displays a cusp at the maximum (figure 9).

The mean-field theory of boundary-induced phase transitions [3, 24] shows that the
characteristics of such transitions depend crucially on the behavidgpohear its maximum.
For example, if

J(pmax) — J(p) ~ |p — pmaxl™ (12)

then the density profile in the maximum-current phase decays, within the mean field, as
p(x) ~ x¥=D "Inthe generic case = 2 fluctuations change the power lawtox) ~ 1/./x
[3,13,14, 16, 25], while fom = 4 the fluctuations were argued [3] to be irrelevant. The only
exactly solved case with # 2 is the deterministic limip, = 1 of the fully parallel TASEP,
for whichm = 1 and it is found [21] that the maximum-current phase disappears altogether.

In the disordered model the current—density relation can be changednfrem?2 to
m = 1 by the choice ofi, c andA¢. It therefore seemed worthwhile to obtain tlae 8)-phase
diagram also for a parameter set below the dotted line in figure 8, corresponding tb. The
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Figure 9. The variation of the current as a function of density for L = 2000,At =1,n =2
andc = 0.4. The vertical dotted line represents the critical dengity= p* = pmax)

method used for the computation was described above in section 3.1. The result is shown in
figure 10. The topology of the phase diagram is similar to the other cases (see figure 2), and the
maximum-current phase is seen to persist. The density profile in the maximum-current phase
is shown in figure 11. While the data are too noisy to precisely determine the decay exponent,
they are certainly consistent with #.Jx-decay, as in the pure case [3, 13,14, 16, 25]; a fit in

the range 1< i < 300 yields an exponent of47 + 0.06. Thus, in contrast to mean-field
theory [3], the density profile appears to be insensitive to the order of the current maximum.

4. Conclusions

Using numerical simulations, we have studied the effect of particlewise disorder on the
phase diagram for the asymmetric exclusion model with open boundaries and a hopping rate
parameterAr, which interpolates between random sequential and fully parallel dynamics.
Apart from effects of the broken particle—hole symmetry, such as the (slight) shift of the first-
order transition line away from the line = 8, the phase diagram was found to be rather
similar to that obtained in the pure case [13, 14,16]. One explanation for the fact that the
effects of disorder are, perhaps, less pronounced than expected, was indicated in section 3.3.
Since the lifetime of particles within the open system is only of the ofdehere is no time
for the disorder-induced density inhomogeneities (platoons) to develop up to the scale of the
system size; using (11) one estimates that they reach a size of thelSrtht**?, which is
small compared witll whenL — oo for anyn.

On the other hand, we have seen that the platoon phase transition occurring in the low-
density phase retains most of the features observed previously in systems with periodic
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boundary conditions, and the analytic results obtained for this case [9, 10, 17] were also
quantitatively confirmed for the open system. Surprisingly, we found that a disorder-induced
cusp at the maximum of the current—density relation changes neither the topology of the phase
diagram, nor the decay of the density profile in the maximum-current phase. The consequences
of such singularities on boundary-induced phase transitions should be explored in future work.
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